Context-specific grasp movement representation in macaque ventral premotor cortex.

نویسندگان

  • Marie-Christine Fluet
  • Markus A Baumann
  • Hansjörg Scherberger
چکیده

Hand grasping requires the transformation of sensory signals to hand movements. Neurons in area F5 (ventral premotor cortex) represent specific grasp movements (e.g., precision grip) as well as object features like orientation, and are involved in movement preparation and execution. Here, we examined how F5 neurons represent context-dependent grasping actions in macaques. We used a delayed grasping task in which animals grasped a handle either with a power or a precision grip depending on context information. Additionally, object orientation was varied to investigate how visual object features are integrated with context information. In 420 neurons from two animals, object orientation and grip type were equally encoded during the instruction epoch (27% and 26% of all cells, respectively). While orientation representation dropped during movement execution, grip type representation increased (20% vs 43%). According to tuning onset and offset, we classified neurons as sensory, sensorimotor, or motor. Grip type tuning was predominantly sensorimotor (28%) or motor (25%), whereas orientation-tuned cells were mainly sensory (11%) or sensorimotor (15%) and often also represented grip type (86%). Conversely, only 44% of grip-type tuned cells were also orientation-tuned. Furthermore, we found marked differences in the incidence of preferred conditions (power vs precision grips and middle vs extreme orientations) and in the anatomical distribution of the various cell classes. These results reveal important differences in how grip type and object orientation is processed in F5 and suggest that anatomically and functionally separable cell classes collaborate to generate hand grasping commands.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of primary motor cortex outputs from ventral premotor cortex during visually guided grasp in the macaque monkey.

Area F5, in the ventral premotor cortex of the macaque monkey, plays a critical role in determining the hand shape appropriate for grasp of a visible object. F5 neurones show increased firing for particular types of grasp, and inactivation of F5 produces deficits in visually guided grasp. But how is F5 activity transformed into the appropriate pattern of hand muscle activity for efficient grasp...

متن کامل

Short-latency category specific neural responses to human faces in macaque inferotemporal cortex

In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...

متن کامل

Neural Activity during Voluntary Movements in Each Body Representation of the Intracortical Microstimulation-Derived Map in the Macaque Motor Cortex

In order to accurately interpret experimental data using the topographic body map identified by conventional intracortical microstimulation (ICMS), it is important to know how neurons in each division of the map respond during voluntary movements. Here we systematically investigated neuronal responses in each body representation of the ICMS map during a reach-grasp-retrieval task that involves ...

متن کامل

Grasp movement decoding from premotor and parietal cortex.

Despite recent advances in harnessing cortical motor-related activity to control computer cursors and robotic devices, the ability to decode and execute different grasping patterns remains a major obstacle. Here we demonstrate a simple Bayesian decoder for real-time classification of grip type and wrist orientation in macaque monkeys that uses higher-order planning signals from anterior intrapa...

متن کامل

Real time decoding of hand grasping signals from macaque pre- motor and parietal cortex

A brain machine interface (BMI) for visually guided grasping would provide significant benefits for paralyzed patients, given the crucial role these movements play in our everyday life. We have developed a BMI to decode grasp shape in real-time in macaque monkeys. Neural activity was evaluated using chronically implanted electrodes in the anterior intraparietal cortex (AIP) and ventral premotor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 45  شماره 

صفحات  -

تاریخ انتشار 2010